How China Detects and Blocks Shadowsocks

Alice, Bob, Carol (GFW Report)
Jan Beznazwy
Amir Houmansadr (University of Massachusetts Amherst)

https://gfw.report/publications/imc20/en/

ACM Internet Measurement Conference 2020

Overview

The Great Firewall of China detects and blocks Shadowsocks using a combination of passive traffic analysis and active probing.

Shadowsocks

Shadowsocks is an encrypted proxy protocol, designed to be difficult to detect.

Active probing

- 1. Identify *possible* Shadowsocks connections.
- 2. Send probes to the server to confirm.

Live server experiment

- Run Shadowsocks servers outside China, connect to them from inside.
- Shadowsocks-libev and OutlineVPN.
- September 2019 to January 2020.

Server experiment: main observations

- Active probers send a variety of probe types, some using replay and some apparently random.
- Legitimate connections may be stored and replayed days later.
- Non-replay probes have a distinctive distribution of payload lengths.
- Active probes come from thousands of IP addresses.

Replay-based probes

 Derived from the first packet in a legitimate connection – perhaps with some bytes changed.

Non-replay probes

How Shadowsocks servers react to random probes

FIN/ACK

The lengths of non-replay probes align with thresholds at which servers switch from timing out to closing the connection.

Active prober source IP addresses

IP address	ASN	count
175.42.1.21	4837	44
223.166.74.207	17621	38
113.128.105.20	4134	36
124.235.138.113	4134	36
221.213.75.88	4837	33
112.80.138.231	4837	32
116.252.2.39	4134	32
124.235.138.231	4134	32
221.213.75.126	4837	32
223.166.74.110	17621	31
12,288 additional rows		
223.166.75.225	17621	1
223.166.75.226	17621	1

Shared TCP timestamp sequences

Likelihood of replay by entropy

Active probe length distribution

Active probe length distribution

Mitigation and circumvention

- Evade passive traffic analysis
 (change entropy or packet lengths), or
- Change responses to unauthenticated probes.

Brdgrd

How (old) Shadowsocks servers react to random probes

How (new) Shadowsocks servers react to random probes

Summary

- The Great Firewall of China detects Shadowsocks servers using a combination of passive traffic analysis and active probing.
- Probing is triggered by the first data packet in a TCP connection, and is more likely when the packet has high entropy and certain lengths.
- There are several probe types, some based on replay and some not.
- Probes come from many source IP addresses, but are evidently centrally managed.
- It is possible to mitigate the effects of active probing by altering packet lengths or changing how servers respond to unauthenticated probes.

gfw.report@protonmail.com

https://gfw.report/publications/imc20/en/